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ABSTRACT

The proposed manned Mars mission will need to be as weight efficient as possible. This
paper will discuss one way of lowering the weight of the vehicle by using aeroassist braking
instead of retro-rockets to slow a craft once it reaches its destination. The two vehicles studied are
a small vehicle similar in size to the Mars Rover Sample Return (MRSR) vehicle and a larger
vehicle similar in size to a six person Manned Mars Mission (MMM) vehicle. Simulated entries
were made using various coefficients of lift (CL), coefficients of drag (CD), and lift-to-drag ratios
(L/D). A range of acceptable flight path angles with their corresponding bank angle profiles was
found for each case studied. These ranges were then compared, and the results are reported here.
The sensitivity of velocity and acceleration to changes in flight path angle and bank angle is also
included to indicate potential problem areas for guidance and navigation system design.

INTRODUCTION

In anticipation of a manned Mars mission as well as a Mars sample return mission, there
has been much research done and many papers written on aeroassist braking in the Earth's
atmosphere (reference 1). However, the return to Earth is only half of the trip. First, we must get
to Mars and achieve an orbit there. In order to save valuable weight, aeroassist braking will be
used to slow the craft at Mars, just as it will at Earth.

Aeroassist braking involves using the atmosphere of a planet to decelerate a craft instead of
using retro-rockets. The craft enters the atmosphere and uses the air particles to deplete its kinetic
energy, slowing the craft to a velocity that will allow orbital capture (reference 2).

The actual configuration for the aerobrake for a manned Mars mission is still being
investigated, so a range of possible vehicles was considered. Within the range of ballistic
coefficients covered in the paper a range of aerobrake sizes, weights, and L/D ratios were
considered. The purpose of this paper is to present the results of a Mars entry study using various
combinations of vehicle parameters. The study will present combinations of initial flight path
angles and bank angles required for capture at Mars. Entry windows and relative sensitivities for
various vehicle combinations will also be shown.

SYMBOLS
A vehicle reference area, square meters
ASM acceleration, meters/sec/sec
Cb drag coefficient
CL lift coefficient
hpi first pass perigee altitude, nautical miles
hp2 second pass perigee altitude, nautical miles

LD lift-to-drag ratio
M mass, kilograms

Vi inertial velocity, meters/sec
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¢ bank angle, degrees

N initial flight path angle, degrees
AV change in velocity, meters/sec
SYMBOLS FOR FIGURES

ALTITO altitude, meters
ASMG acceleration, "g" units
BNKANG  bank angle, degrees

VELI velocity, meters/sec

APPROACH

The studies conducted in this paper were made using a software package known as the
Program to Optimize Simulated Trajectories (POST). This program can be used to determine initial
parameters and control parameters throughout a trajectory to accomplish stated mission objectives.
For this study, all simulated entries consist of three steps, regardless of vehicle size or L/D ratio.
First, the vehicle enters the atmosphere at 300 km with an entry flight path angle determined by
POST. The aerodynamic forces on the vehicle are small until 125 km, however, atmospheric data
were available up to 300 km and so the problem was started there. Next, the program calculates a
set of bank angles that should result in capture. Third, the craft's final trajectory is achieved. This
trajectory can be hyperbolic, elliptical with eventual impact, elliptical with capture, or impact on the
first pass. The trajectories discussed here are either elliptical with eventual impact or elliptical with
capture. Eventual impact means that the program predicted impact on the second pass, but
achieved capture on the first pass. To correct this problem of impact, slight thrust can be added at
some point in the trajectory to give the needed boost to a higher orbit. This is another point for
additional study and will not be discussed to any great extent within this paper.

It can be observed that the individual bank angles that result in capture do not occur at
regular time intervals. The intervals were determined by looking at plots of the profiles and
decreasing the number of data points by combining adjacent times that showed little to no change
compared with one another.

A vehicle smaller than those proposed for a manned Mars mission was used in the
beginning of the study for two reasons. First, to confirm that the program would run correctly,
data from the program were checked with data available from other sources. (The second reason
was to gather data that might be used for a lander vehicle deployed from the larger manned
vehicle.) The physical and aerodynamic characteristics used for the small vehicle are given in
Table 1. Runs were made for L/D equal to 1.5, 1.0, and .5 with Cp = 2.

Once the smaller vehicle runs were completed, a larger vehicle representative of a manned
Mars mission (MMM) vehicle which could carry a crew of five to seven members and the supplies
needed for the mission was investigated. Two "large” vehicles were considered. The physical and
aerodynamic characteristics of the large vehicle are presented in Table 2. The first runs of the
MMM vehicle were made with an L/D of 1.0 where C1, = Cp = 2. Then, the CJ, was changed to 1

as with the small vehicle, and runs with L/D = (.5 were made.



Since the Viking probes returned their data on the Martian atmosphere, several different
atmosphere models have been developed. For the runs described above, one of these atmospheres
(atmosphere 1) was chosen and put into tables that were suitable to the program (Table 3). Near
the end of the project time, when the runs with atmosphere 1 were completed, a second atmosphere
(atmosphere 2) was tabulated and introduced into the program. The purpose of this switch was to
determine if there was any significant change in the acceptable flight path angle windows from
those determined using atmosphere 1.

RESULTS AND DISCUSSION

Initially Mars entry runs were made trying to achieve capture with a single fixed bank
angle. The problem was extremely sensitive to changes in initial flight path angle and bank angle
and no combination of the two angles was found that would result in capture. Changes of the

order of .0001° would result in either impact or skip-out. At this point, the multiple bank angle
approach was tried. The problem was split into time slots and POST was asked to select the bank
angles that would result in a capture trajectory. The entry flight path angle and bank angles are
given in Table 4 .

To determine the flight-path-angle window that would result in capture, two sets of runs
were made: one set to determine the least negative entry flight path angle and a second set to
determine the most negative flight path angle possible. The difference in these entry-flight-path
angles gave the entry-flight-path-angle window.

For each of these maximum and minimum flight path angles, a bank angle profile that
would result in capture was determined for every vehicle. In addition to ensuring capture, these
runs had perigee altitudes greater than 30 km. In all of the maximum initial flight path angle (least
negative) cases and in many of the minimum flight path angle (most negative) cases the second
pass orbit also would have an acceptable perigee altitude. The results of these runs are given in
Table 4 and typical time histories are shown in figures 1 and 2. Generally, the maximum flight
path angle runs stayed higher in the atmosphere and remained in the atmosphere for longer periods
of time than the minimum flight path angle runs which plunged deeper into the atmosphere and
usually reached their minimum altitude within the first 200 seconds of the run (figure 2). From
Table 4 and figure 1, the bank angles for the maximum flight path angle runs are seen to tend

toward lift down (full lift down = 180°) in order to keep the craft in the dense atmosphere long
enough to decelerate to capture velocity. Conversely, the minimum flight path angle runs tended

toward lift up (full lift up=0°) to pull the craft out of the more dense atmosphere before too much
energy was lost, causing the craft to crash into the planet's surface.

In general for the vehicles investigated the entry flight path window was about 1.5°
(figure 3). Atlarger L/D's the vehicles with a smaller M/CD*A tended to have a slightly smaller
window (Table 4), while at L/D=.5 no significant effect of M/CD*A was seen. Also, for a given
M/CD*A the entries had a greater energy loss as L/D decreased. The perigee altitudes showed no
consistent trends with L/D or M/Cp*A. However, the bank angle profiles were affected by
changes in both M/CpD*A and L/D (figures 1 & 2). The changes were especially noticeable with
the minimum flight path angle runs (figure 1 & Table 4). Maximum flight path angle entries using
vehicles with higher L/D ratios and larger M/CD*A values tended to deviate more from full lift
down and these trends were stronger with L/D ratios of .5 where the entries were predominantly
lift down throughout the run (figure 1 & Table 4). The significant point from these runs was that,

given a 1/2° window in the middle of the extremes, a set of bank angles could be found so that



capture was possible. This implies that the entry corridor is wide enough so that guidance systems
that would result in capture can be designed for the range of vehicles considered in this study.

Table 5 shows the sensitivity of various trajectory parameters to changes in flight path
angle for a given set of bank angles. The sensitivities were not shown for all runs since the trends
and values seen can be illustrated using the tables given. The table shows that if the bank angles
are fixed for a particular entry trajectory then very small variations of entry flight path angle have a
significant effect on the trajectory. A second observation is that the types of trajectories flown can
influence the sensitivity to entry flight path angle. Trajectories that stayed higher in the atmosphere
during the initial part of the entry tended to be more sensitive to changes in initial flight path angle
than those trajectories that initially penetrated deeper into the atmosphere. The implication is that
for a fixed bank angle sequence the entry/capture trajectory was more sensitive to changes in initial
flight path angle error when the braking was over a longer duration than was true for trajectories
that flew higher in the atmosphere. The message for designers of guidance systems is that braking
higher in the atmosphere where "g" loads are less and heating is less could require more precise
guidance systems. This problem must be examined further.

Table 5 also shows the sensitivity of various trajectory parameters to the different bank
angles in the bank angle sequence. As expected the greatest sensitivity occurred when the vehicle
was deepest in the atmosphere and the forces on the vehicle were greatest (figure 1 & Table 5). In
most cases the trajectory parameters were not particularly sensitive to bank angle changes.
However, since the minimum altitude ,"g" load, and heat rate could be altered by changing the
bank angles, further investigation of the effect of the problem formulation on the bank angle

sequence should be conducted.

To determine the effect of flying through a different Martian atmosphere runs were made
using a second atmospheric model. Atmosphere 2 is given in Table 3 and was used during the
design of the Viking lander. Data received from Viking indicated that this atmosphere was close to
that of Mars at several altitudes. To examine the effect of another atmosphere, small vehicle 2 and
large vehicle 2 were used. Both vehicles were assumed to have an L/D = 1 and Cp = 2. The
results are shown in Tables 6 & 7 and figure 4. The initial flight-path-angle window and the
sensitivities were similar to those seen with the previous atmosphere. For the maximum flight path
angle runs, the initial bank angle runs were different since atmosphere 2 was more dense at higher
altitudes (figure 4). However, the altitude profile was not significantly different when the vehicle
flew through atmosphere 2.

CONCLUSIONS

For the vehicles investigated, entry flight-path-angle windows in excess of 1° were found.
This included vehicles with a M/Cp*A (representative of a six-person Mars mission vehicle) with
a 15.24 m (50 ft) diameter aeroshell. While this window should offer a reasonable target for a
Martian aerocapture, the study also indicated that the capture trajectories were very sensitive to
errors in the entry flight path angle. Trajectories flying higher in the aimosphere seemed to have a
greater sensitivity to errors than those flying lower in the atmosphere. As expected, the sensitivity
to bank angle error was greatest in the region where the aerodynamic forces were greatest.
However, the projected state errors were not so large as to imply that a bank angle
guidance/control system could not be flown.

A limited number of runs were made with a second model of the Martian atmosphere.
These runs showed only minimal differences from those runs made using the original atmospheric
model.



SUGGESTED STUDIES

The current study looked at vehicles with four different ballistic coefficients (M/CpD*A).
However, these vehicles all had the same drag coefficient and were scaled to meet various
weight or L/D combinations. Other vehicle types, blunter or more streamlined, should be
investigated. :

Only two Martian atmospheres were considered, one of these for only a limited number of
runs. Additional atmospheric models need to be included in future studies.

One check on the AV required to get an acceptable second pass orbit was made. The AV
required to get an acceptable second pass was small and similar calculations need to be made
for any runs that did not have an acceptable second pass orbit.
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TABLE 1  VEHICLE CHARACTERISTICS
SMALL VEIHCLE

k

Vehiclel -M_ = 5008 A = 16nt.Cy = 2
(‘.D/\ nt n D
M = 16,000 kg
M ke
Vehicle2 -M. = 1000 B A = 1607, Cpy = 2
CI)A '“2 ) lll? D

M = 32,000 kg

TABLE 2 VEHICLE CHARACTERISTICS
LARGE VEHICLE

k
Vehicle ! -M_ = 6228 A = 18241, Cpy = 2

) ?
M = 226,378 kg
M kg
Vehicle2 - = 1,147-2, A = 182 n?,Cpy = 2
hicle oA . nt, Cp

M =417,560 kg
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